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Linear Image Classifier
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Training

Parameters 
to optimise

Dataset of 
images and 
annotated 
categories

Evaluation

Known

● All the weight of the 
computation is carried by 
the training. Evaluation is 
a simple matrix 
multiplication.

● Once we compute the 
parameters W,b we don’t 
need the training data 
anymore.



Neural Network Representation



Neuron

Input
image

Weights Output

= =



Two neurons

Input
image

Weights Output

=

X1

X2

1

=



Multiple neurons and layers

● We can keep adding neurons in 
each layer and this means adding 
more classifiers.

Input
layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

● However adding more layers of 
neurons does not increase the 
complexity of the classifier, the 
model is still linear.



Activation Functions*

* Based on Slides by A. Peñate Sanchez.



Neuron with activation function

Input image Weights Output

● We add a nonlinear 
operation applied to the 
output of the neuron.

● This increases the 
complexity of the classifier 
and allows the optimisation 
to favor certain features 
over others (automatic 
feature selection).



Activation functions
● Sigmoid

○ Inspired by probability theory
○ Single neuron corresponds exactly to the input-output mapping defined by logistic regression.
○  



Activation functions
● Hyperbolic tangent

○ rescaled version of the sigmoid



Activation functions
● ReLU (Rectified Linear Unit)

○  
▪ Out = 0   if (Input of i) < 0
▪ Out = linear  otherwise

○ The most popular activation function for deep neural networks

ReLU typically learns 
much faster than tanh, 
[Glorot et al. ICAIS 2011]



Connection Weights
● Effect of different weights in a neuron connection (sigmoid activation)



BIAS
● The weights can change the shape of the activation function, the BIAS shifts the 

function activation response.

● By adjusting the weights and the BIAS a single neuron can represent many different 
activation functions



Fully Connected Deep Neural Networks

3 Hidden layers

● The final result is a composition of non 
linear functions applied to the features 
(pixels).

● The intermediate values that emerge as 
outputs of one layer of neurons are used 
as new input features (of increasing 
complexity) for the next layer.



Fully Connected Deep Neural Networks

Red lines correspond to 
high activation values.



Convolutional Neural Networks
(CNNs)



Neural Networks on Images - Problem
So far, the design choice has been to fully connect all the hidden units to all the 
input units.

With images of size 96x96 this start to become unfeasible:
Learning features that span the entire image is very computationally expensive

Solution:
Locally Connected Networks 
Restrict the connections between the hidden units and the input units



Convolutional Layer

● We leave the input images as 3D arrays 
(links channels of the same pixel).

● The convolutional layer is composed of a 
set of kernels which are convolved with the 
input image.

● Each kernel filters localised features in the 
input image. The size of the kernels 
determines the size of the features that can 
be learned.



Convolutional Layer
Operation: convolution 
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● The weights of the kernels 
are learned as part of the 
optimisation (feature 
selection).

● The output of the conv layer 
is a stack of 2D activation 
maps.

Activation map



Convolutional Layer
Operation: convolution 
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Activation map ● The weights of the kernels 
are learned as part of the 
optimisation (feature 
selection).

● The output of the conv layer 
is a stack of 2D activation 
maps.



Pooling Layer
Goal: progressively reduce the spatial size of the representation to 
reduce the amount of parameters and computation in the network, 
and hence to also control overfitting.

● Max pooling
● Min pooling
● Average pooling
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Pooling Layer

If the pooled regions are contiguous areas in the input image, then the pooling 
units will be translation invariant, something necessary:

we want the classifier to still accurately classify objects regardless of their relative 
position in the image frame.





Dropout Layer
Technique used only in the training phase, addressing the overfitting problem.

Idea:

● Randomly drop units during training

Drop out means temporarily removing the unit from the network along with all its 
incoming and outgoing connections



Dropout Layer
Example on fully connected layers

Each unit is retained with a fixed probability p independent of other units

In addition to prevent overfitting, it 
also provides a way of approximately 
combining exponentially many 
different neural network 
architectures efficiently.



A bit of code:
simple example with Keras




