DISTRO

Deep Learning Course Introduction to Convolutional Neural Networks

Alejandro Sztrajman

Vienna, Austria, November 2017

Funded by the European Union

Index

- Linear Image Classifier
- Neural Network Representation
- Deep Neural Networks
- Convolutional Neural Networks
- CNN Example with Keras

Linear Image Classifier

Image Classification

$f \colon \text{image} \to \text{category}$

Image Classification

Image Classification

Input Features

Evaluation

$$f(x_i) = Wx_i + b$$

- All the weight of the computation is carried by the training. Evaluation is a simple matrix multiplication.
- Once we compute the parameters W,b we don't need the training data anymore.

Neural Network Representation

Neuron

Multiple neurons and layers

- We can keep adding neurons in each layer and this means adding more classifiers.
- However adding more layers of neurons does not increase the complexity of the classifier, the model is still linear.

Activation Functions*

* Based on Slides by A. Peñate Sanchez.

Neuron with activation function

- We add a nonlinear operation applied to the output of the neuron.
- This increases the complexity of the classifier and allows the optimisation to favor certain features over others (automatic feature selection).

Activation functions

- Sigmoid
 - Inspired by probability theory
 - Single neuron corresponds exactly to the input-output mapping defined by logistic regression.

0

$$f(x) = \frac{1}{1 + exp(-x)}$$

Activation functions

- Hyperbolic tangent
 - rescaled version of the sigmoid

Activation functions

- ReLU (Rectified Linear Unit)
 - $\circ \quad f(x) = \max(0, x)$
 - Out = 0 if (Input of i) < 0
 - Out = linear otherwise
 - The most popular activation function for deep neural networks

ReLU typically learns much faster than tanh, [Glorot et al. ICAIS 2011]

Connection Weights

• Effect of different weights in a neuron connection (sigmoid activation)

BIAS

• The weights can change the shape of the activation function, the BIAS shifts the function activation response.

 By adjusting the weights and the BIAS a single neuron can represent many different activation functions

Fully Connected Deep Neural Networks

- The final result is a composition of non linear functions applied to the features (pixels).
- The intermediate values that emerge as outputs of one layer of neurons are used as new input features (of increasing complexity) for the next layer.

3 Hidden layers

Fully Connected Deep Neural Networks

high activation values.

Convolutional Neural Networks (CNNs)

Neural Networks on Images - Problem

So far, the design choice has been to **fully connect** all the hidden units to all the input units.

With images of size 96x96 this start to become *unfeasible*: Learning features that span the entire image is very computationally expensive

Solution:

Locally Connected Networks

Restrict the connections between the hidden units and the input units

Convolutional Layer

- We leave the input images as 3D arrays (links channels of the same pixel).
- The convolutional layer is composed of a set of kernels which are convolved with the input image.
- Each kernel filters localised features in the input image. The size of the kernels determines the size of the features that can be learned.

Convolutional Layer

Operation: convolution

Convolutional Kernel

1 _{×1}	1_×0	1 _{×1}	0	0
0 _{×0}	1 _{×1}	1_×0	1	0
0 _{×1}	0 ×0	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0
Image				

Activ	ation	map
4		

Convolved Feature

- The weights of the kernels are learned as part of the optimisation (feature selection).
- The output of the conv layer is a stack of 2D activation maps.

Convolutional Layer

Operation: convolution

Convolutional Kernel

- The weights of the kernels are learned as part of the optimisation (feature selection).
- The output of the conv layer is a stack of 2D activation maps.

Pooling Layer

Goal: progressively <u>reduce the spatial size</u> of the representation to reduce the amount of parameters and computation in the network, and hence to also <u>control overfitting</u>.

Single depth slice

- Max pooling
- Min pooling
- Average pooling

×	\	1	1	2	4
		5	6	7	8
		3	2	1	0
		1	2	3	4
•					

max pool with 2x2 filters and stride 1

6	7	8
6	7	8
3	3	4

Pooling Layer

Goal: progressively <u>reduce the spatial size</u> of the representation to reduce the amount of parameters and computation in the network, and hence to also <u>control overfitting</u>.

Single depth slice

- Max pooling
- Min pooling
- Average pooling

x	1	1	2	4
	5	6	7	8
	3	2	1	0
	1	2	3	4
				v

max pool with 2x2 filters	

6	7	8
6	7	8
3	3	4

Pooling Layer

If the pooled regions are contiguous areas in the input image, then the pooling units will be **translation invariant**, something necessary:

we want the classifier to still accurately classify objects regardless of their relative position in the image frame.

Dropout Layer

Technique used only in the training phase, addressing the overfitting problem.

Idea:

• Randomly drop units during training

Drop out means **temporarily** removing the unit from the network along with all its incoming and outgoing connections

Dropout Layer

Example on fully connected layers

Each unit is retained with a fixed probability p independent of other units

In addition to prevent overfitting, it also provides a way of approximately **combining** exponentially many **different neural network architectures** efficiently.

(b) After applying dropout.

A bit of code: simple example with Keras