
Deep Learning Course
Introduction to Convolutional Neural Networks

Vienna, Austria, November 2017

Alejandro Sztrajman

Funded by
the European Union

Index
● Linear Image Classifier

● Neural Network Representation

● Deep Neural Networks

● Convolutional Neural Networks

● CNN Example with Keras

Linear Image Classifier

Image Classification

Image Classification

Image Classification

Image Classification

Weights

Input Features

Bias

Training

Parameters
to optimise

Dataset of
images and
annotated
categories

Evaluation

Known

● All the weight of the
computation is carried by
the training. Evaluation is
a simple matrix
multiplication.

● Once we compute the
parameters W,b we don’t
need the training data
anymore.

Neural Network Representation

Neuron

Input
image

Weights Output

= =

Two neurons

Input
image

Weights Output

=

X1

X2

1

=

Multiple neurons and layers

● We can keep adding neurons in
each layer and this means adding
more classifiers.

Input
layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

● However adding more layers of
neurons does not increase the
complexity of the classifier, the
model is still linear.

Activation Functions*

* Based on Slides by A. Peñate Sanchez.

Neuron with activation function

Input image Weights Output

● We add a nonlinear
operation applied to the
output of the neuron.

● This increases the
complexity of the classifier
and allows the optimisation
to favor certain features
over others (automatic
feature selection).

Activation functions
● Sigmoid

○ Inspired by probability theory
○ Single neuron corresponds exactly to the input-output mapping defined by logistic regression.
○

Activation functions
● Hyperbolic tangent

○ rescaled version of the sigmoid

Activation functions
● ReLU (Rectified Linear Unit)

○
▪ Out = 0 if (Input of i) < 0
▪ Out = linear otherwise

○ The most popular activation function for deep neural networks

ReLU typically learns
much faster than tanh,
[Glorot et al. ICAIS 2011]

Connection Weights
● Effect of different weights in a neuron connection (sigmoid activation)

BIAS
● The weights can change the shape of the activation function, the BIAS shifts the

function activation response.

● By adjusting the weights and the BIAS a single neuron can represent many different
activation functions

Fully Connected Deep Neural Networks

3 Hidden layers

● The final result is a composition of non
linear functions applied to the features
(pixels).

● The intermediate values that emerge as
outputs of one layer of neurons are used
as new input features (of increasing
complexity) for the next layer.

Fully Connected Deep Neural Networks

Red lines correspond to
high activation values.

Convolutional Neural Networks
(CNNs)

Neural Networks on Images - Problem
So far, the design choice has been to fully connect all the hidden units to all the
input units.

With images of size 96x96 this start to become unfeasible:
Learning features that span the entire image is very computationally expensive

Solution:
Locally Connected Networks
Restrict the connections between the hidden units and the input units

Convolutional Layer

● We leave the input images as 3D arrays
(links channels of the same pixel).

● The convolutional layer is composed of a
set of kernels which are convolved with the
input image.

● Each kernel filters localised features in the
input image. The size of the kernels
determines the size of the features that can
be learned.

Convolutional Layer
Operation: convolution

1
1

11

1

Convolutional Kernel

0
0

0
0

● The weights of the kernels
are learned as part of the
optimisation (feature
selection).

● The output of the conv layer
is a stack of 2D activation
maps.

Activation map

Convolutional Layer
Operation: convolution

1
1

11

1

Convolutional Kernel

0
0

0
0

Activation map ● The weights of the kernels
are learned as part of the
optimisation (feature
selection).

● The output of the conv layer
is a stack of 2D activation
maps.

Pooling Layer
Goal: progressively reduce the spatial size of the representation to
reduce the amount of parameters and computation in the network,
and hence to also control overfitting.

● Max pooling
● Min pooling
● Average pooling

Pooling Layer
Goal: progressively reduce the spatial size of the representation to
reduce the amount of parameters and computation in the network,
and hence to also control overfitting.

● Max pooling
● Min pooling
● Average pooling

Pooling Layer

If the pooled regions are contiguous areas in the input image, then the pooling
units will be translation invariant, something necessary:

we want the classifier to still accurately classify objects regardless of their relative
position in the image frame.

Dropout Layer
Technique used only in the training phase, addressing the overfitting problem.

Idea:

● Randomly drop units during training

Drop out means temporarily removing the unit from the network along with all its
incoming and outgoing connections

Dropout Layer
Example on fully connected layers

Each unit is retained with a fixed probability p independent of other units

In addition to prevent overfitting, it
also provides a way of approximately
combining exponentially many
different neural network
architectures efficiently.

A bit of code:
simple example with Keras

