
Practical Activity: Neural Radiance Fields

Homerton College. August 14, 2023.

Cambridge Summer Course

Dr Alejandro Sztrajman



Neural Fields

Neural Fields are simple MLP neural networks that can be used to learn a signal or function.
In other words, it's a neural network that learns the mapping between a set of coordinates (input) 
and a set of outputs. 

In this simple example, we have an MLP neural 
network that maps a coordinate x to a value y. This 
means that if we give the network different values 
of x, we will receive the corresponding values of y.
This mapping can be expressed like this:

And so the information inside the neural network is 
encoding a continuous function f.

In this simple case, x and y are 1-dimensional and so the network is encoding a specific 1D function (a sine).
We can plot this function simply by inputting different values of x to the network and drawing the output y values.



Neural Fields

This neural representation for functions has received many different names recently:
● Neural Fields.
● Implicit Neural Representations (INRs).
● Coordinate-based Networks.
● NeRFs (only a specific type).

There are multiple advantages to representing 
information/signals using neural fields:

● Continuous Representation (no grid).
● Infinite Resolution.
● Free non-linear interpolation.
● Free derivatives       without discretization 

error.

In this simple case, x and y are 1-dimensional and so the network is encoding a specific 1D function (a sine).
We can plot this function simply by inputting different values of x to the network and drawing the output y values.



Neural Fields: Representing Complex Signals

Time Series: Images: Video: Geometry / Shape:

So far we showed a simple 1-dimensional example that can be used to represent a plot (or a time-series).
We show now examples with higher dimensionality, which can be used to represent more complex signals.



Neural Radiance Fields (NeRF)

Our last example of Neural Fields is the Neural Radiance Field (NeRF). These are particular cases of neural 
fields that are used to represent entire realistic 3D scenes, including geometries, illumination and materials. 

The input coordinates of the NeRF are the position of a point in 3D space (x,y,z) and the view angles     and   .
The output that we obtain are the RGB values of outgoing light/radiance, and the density    of the material at the 
point (x,y,z). In short: we can ask the network the color and intensity of light that comes from every 3D point in 
the scene, in every direction.



How to Train your NeRF?

Training a NeRF requires two things:
● Many pictures of a scene (e.g. 200).
● The camera pose of each picture (translation, 

rotation, etc. of the camera). This information 
is usually encoded in the extrinsic matrix.

Image taken from: Mildenhall, Ben et al. “Local Light Field Fusion: Practical View 
Synthesis with Prescriptive Sampling Guidelines.” ACM Trans. on Graphics 38, no. 4 
(July 12, 2019): 1–14. https://doi.org/10.1145/3306346.3322980.



How to Train your NeRF?

Training a NeRF requires two things:
● Many pictures of a scene (e.g. 200).
● The camera pose of each picture (translation, 

rotation, etc. of the camera). This information 
is usually encoded in the extrinsic matrix.

After training is complete, the NeRF encodes all the
information of the scene: geometries, lights, 
materials (even view-dependent effects). This 
enables rendering the scene from new points of view 
(known as Novel View Synthesis).

NeRF Rendering of fern from:
https://www.matthewtancik.com/nerf

https://docs.google.com/file/d/1oDrJB65voBcbco4aG8D6sETHcYTPUTjr/preview
https://www.matthewtancik.com/nerf


How to Train your NeRF?

Training a NeRF requires two things:
● Many pictures of a scene (e.g. 200).
● The camera pose of each picture (translation, 

rotation, etc. of the camera). This information 
is usually encoded in the extrinsic matrix.

But how can we obtain the poses of the camera in the 
pictures?

Instead of taking individual pictures, we will record a 
video of the scene while moving the camera. We will then 
use a software that extracts images from the video and 
performs structure-from-motion (SfM) to estimate the 
camera poses of the individual images.

There are multiple software that can perform pose estimation:



Practical Activity: What do we need to do?

We want to render a short video of a scene, where we move the camera around the 
scene a bit (similar to the rendering that we saw of the fern). In order to do that, we will 
need to follow these steps:

CAPTURE
1) Install the app "Kiri Engine" in your phone.
2) Go to the following link and follow the instructions to enable developer mode in 

the app.
3) In the same page, follow the instructions to do "pose estimation" and export the 

capture (download or email).
- The captured scene must be static.
- Move the camera slowly around the objects that you want to capture.
- Try to capture the objects from multiple angles (from the top, from the 

sides, from below).
- Try to keep the video short (15 sec. approx).

https://docs.nerf.studio/en/latest/quickstart/custom_dataset.html#kiri-engine-capture


Practical Activity: What do we need to do?

We want to render a short video of a scene, where we move the camera around the scene a bit (similar to the 
rendering that we saw of the fern). In order to do that, we will need to follow these steps:

NERFSTUDIO COLAB TRAINING AND RENDERING
1) Go to https://docs.nerf.studio/ and click in "colab" on the upper left corner of the page.
2) Run the cell "Install Nerfstudio and Dependencies" and check that everything went well.
3) Skip the cell "Downloading and Processing Data" (this is useful for other scan methods, not Kiri).
4) Create a new cell and type: "!npm install -g npm". Run the cell.
5) Upload the scene exported from Kiri into colab (in a known location, e.g. /content/).
6) Run the "Start Training" Cell. You might need to make minor modifications (e.g. paths) in lines 4 and 5.
7) During the execution of the training loop, the output in colab will show an url to connect to the nerfstudio 
viewer. Click on this link. A new tab should open, with a 3D viewer of the scene. The quality of the scene 
should improve as the training progresses. You should also be able to see the set of individual pictures of the 
scene that were extracted from the original video.

https://docs.nerf.studio/en/latest/#


Practical Activity: What do we need to do?

We want to render a short video of a scene, where we move the camera around the scene a bit (similar to the 
rendering that we saw of the fern). In order to do that, we will need to follow these steps:

NERFSTUDIO COLAB TRAINING AND RENDERING
8) Investigate the use of the viewer. You should be able to position multiple "cameras" in different positions in 
the scene. After positioning the cameras, it should be possible to export a .json file that contains the 
information about the "camera movement" (the viewer will generate a smooth movement of the camera 
between the locations that we selected previously).
9) Download the generated .json file.
10) Wait until the training has finished (without errors). Upload the .json file from step 9 to to Google Colab, to 
the folder created by the training process.
11) Run the last cell in the Google Colab. You might need to modify the definition of "base_dir" to point to the 
folder created by the training (and where the .json file is). This will generate a rendered video of the scene that 
you should be able to download.


