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Abstract

We present a novel differentiable point-based rendering
framework for material and lighting decomposition from
multi-view images, enabling editing, ray-tracing, and real-
time relighting of the 3D point cloud. Specifically, a 3D
scene is represented as a set of relightable 3D Gaussian
points, where each point is additionally associated with a
normal direction, BRDF parameters, and incident lights
from different directions. To achieve robust lighting esti-
mation, we further divide incident lights of each point into
global and local components, as well as view-dependent
visibilities. The 3D scene is optimized through the 3D
Gaussian Splatting technique while BRDF and lighting
are decomposed by physically-based differentiable render-
ing. Moreover, we introduce an innovative point-based ray-
tracing approach based on the bounding volume hierarchy
for efficient visibility baking, enabling real-time rendering
and relighting of 3D Gaussian points with accurate shadow
effects. Extensive experiments demonstrate improved BRDF
estimation and novel view rendermg results compared
1o s ~the-art material ch Our
framework showcases the potential to revolutionize the
mesh-based graphics pipeline with a relightable, trace-
able, and editable rendering pipeline solely based on pmm
cloud. ijeu ,mgy

1. Introduction

Reconstructing 3D scenes from multi-view images for
photo-realistic rendering is a fundamental problem at the
intersection of computer vision and graphics. With the re-
«.em development of Neural Radiance Field (NeRF) [27],
iable rendering iques have gained
popularity and have demonstrated extraordinary ability in
image-based novel view synthesis. However, despite the
prevalence of NeRF, both training and rendering of the neu-
ral implicit representation require substantial time invest-

“Equally contributed.

Figure 1. Multi-object composition and realistic relighting
through our proposed relightable 3D Gaussian. From top o bot-
tom: 1) optimized point cloud with BRDF attributes (colored with
base color) 2) physically based relighting with shadow effects via
point-based ray tracing, and 3) rendered normal map.

ments, posing an insurmountable ch.lllenge for real-time
rendering. have collecti that
the efficiency bottlencck lies in the query of the neural field.
To tackle the slow sampling problem, different acceleration
algorithms have been proposed, including the utilization of
grid-based {10, 28] and pr ion [17] for
advanced baking.

Recently, 3D Gaussian Splatting (3DGS) [22] has been
proposed and has gained significant attention from the com-
munity. The method employs a set of 3D Gaussian points to
represent a 3D scene and projects these points onto a des-
ignated view through a title-based rasterization. Attributes
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3D Gaussian Splatting: Brief Introduction
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Fig. 1. Our method achieves real-time rendering of radiance fields with quality that equals the previous method with the best quality [Barron et al. 2022],
while only requiring optimization times competitive with the fastest previous methods [Fridovich-Keil and Yu et al. 2022: Miller et al. 2022]. Key to this
performance is a novel 3D Gaussian scene representation coupled with a real-time differentiable renderer, which offers significant speedup to both scene
optimization and novel view synthesis. Note that for comparable training times to InstantNGP [Maller et al. 2022], we achieve similar quality to theirs; while
this is the maximum quality they reach, by training for 51min we achieve state-of-the-art quality, even slightly better than Mip-NeRF360 [Barron et al. 2022]

Radiance Field methods have recently revolutionized novel-view synthesis
of scenes captured with multiple photos or videos. However, achieving high
visual quality still requires neural networks that are costly to train and ren-
der, while recent faster methods inevitably trade off speed for quality. For
unbounded and complete scenes (rather than isolated objects) and 1080p
resolution rendering, no current method can achieve real-time display rates.
We introduce three key elements that allow us to achieve state-of-the-art
visual quality while maintaining competitive training times and importantly
allow high-quality real-time (= 30 fps) novel-view synthesis at 1080p resolu-
tion. First, starting from sparse points produced during camera calibration,
we represent the scene with 3D Gaussians that preserve desirable proper-
ties of continuous volumetric radiance fields for scene optimization while
avoiding unnecessary computation in empty space; Second, we perform
interleaved optimization/density control of the 3D Gaussians, notably opti-
‘mizing anisotropic covariance to achieve an accurate representation of the
scene; Third, we develop a fast visibility-aware rendering algorithm that
supports anisotropic splatting and both accelerates training and allows real-
time rendering. We demonstrate state-of-the-art visual quality and real-time
rendering on several established datasets.
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models; ization; Machine learning
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1 INTRODUCTION

Meshes and points are the most common 3D scene representations
because they are explicit and are a good fit for fast GPU/CUDA-based
rasterization. In contrast, recent Neural Radiance Field (NeRF) meth-
ods build on continuous scene representations, typically optimizing
a Multi-Layer Perceptron (MLP) using volumetric ray-marching for
novel-view synthesis of captured scenes. Similarly, the most efficient
radiance field solutions to date build on continuous representations
by interpolating values stored in, e.g., voxel [Fridovich-Keil and Yu
etal. 2022] or hash [Miiller et al. 2022] grids or points [Xu et al. 2022].
While the continuous nature of these methods helps optimization,
the stochastic sampling required for rendering is costly and can
result in noise. We introduce a new approach that combines the best
of both worlds: our 3D Gaussian representation allows optimization
with state-of-the-art (SOTA) visual quality and competitive training
times, while our tile-based splatting solution ensures real-time ren-
dering at SOTA quality for 1080p resolution on several previously
published datasets [Barron et al. 2022; Hedman et al. 2018; Knapitsch
et al. 2017) (see Fig. 1).

Our goal s to allow real-time rendering for scenes captured with
‘multiple photos, and create the representations with optimization
times as fast as the most efficient previous methods for typical
real scenes. Recent methods achieve fast training [Fridovich-Keil
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3D Gaussian Splatting: Brief Introduction
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For each 3D Gaussian we have parameters:

Mean u

Covariance >

Max Opacity o

View-dependent colour c (4th-order SHs).

Alpha Blending:

i—1
C = Z Tiaici with Tz — (1 — Oéj).
ieEN J=1

C: colour map. a: 3D Gaussian opacity. Opacity =1



3D Gaussian Splatting: Brief Introduction
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http://www.youtube.com/watch?v=AGr__JrojZg

Relightable 3D Gaussian Splatting
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For each 3D Gaussian we have parameters:

Mean u

Covariance X

Max Opacity o

View-dependent colour c (4th-order SHs).

=

New set of parameters per Gaussian:

Mean: u
Covariance: 2
Max Opacity: o
View-dependent colour: ¢ (4th-order SHs).
Normal: n ] Geometry

Global incident light visibility: v (SHs). ] Light
Local incident light: | (SHs).

Base colour: b
Roughness: r

Material
Metallicness: m



Relightable 3D Gaussian Splatting: Normal Estimation

A potential methodology involves treating the spatial In regular point clouds, normals can be estimated by
means of 3D Gaussians as a conventional point cloud and assuming planar surfaces between neighbouring points. But:

executing normal estimation based on the local planar as- . . .

. . . e  Sparcity of points can lead to inaccurate normails.
sumption. However, this approach is hindered by the often Th t | int cloud
sparse density of the points and, more critically, their soft ¢ ese are not regular point clouas.

nature, signifying a non-precise alignment with the object
surface, which can lead to an inaccurate estimate.

To address these limitations, we propose an optimization 1
of n from initial random vectors via back-propagation. This )
process entails rendering the depth and normal map for a
specified viewpoint:

{D,N} =) Tiai{di,ni}, 3)
iEN C= Z Tioic; L ADN} = Z Tioi{d;, n;},

iEN iEN

For each camera pose, we can compute the depth d. for
each Gaussian.

2) Then we can compute depth and normal maps D and N,
using alpha blending (as used for the colour map).

where, d; and n; denote the depth and normal of the point.
We then encourage the consistency between the rendered
normal N and the pseudo normal N , computed from the
rendered depth D under the local planarity assumption. The
normal consistency is quantified as follows:

Ln=|IN=N|2. )

3)  With the depth map D we can compute a pseudo-normal
map N
4) Finally we enforce consistency between N and N'.

: Pseudo
imNormal



Relightable 3D Gaussian Splatting: Light Representation

Incident Light Modeling Optimizing a NeILF for each Not using NelLF.
Gaussian directly can be overly unconstrained, making it
difficult to accurately decompose incident light from its ap-
pearance. We apply a prior by dividing the incident light Incident light is split between local and global:

into global and local components. The sampled incident V(w)and L, (w): different for each Gaussian.
light at a Gaussian from direction wj is represented as: ' | _Local fl G .
(w,): same for all Gaussians.

L1<wz) = V(wl) ¥ Lglobal(wi) #H Llocal(“‘)i)a (8)

I'Global

All three terms are encoded as Spherical

where the visibility term V' (w;) and the local light term Harmonics

Liocai (w;) are parameterized as Spherical Harmonics (SH)
for each Gaussian, denoted as v and [ respectively. The
global light term is parameterized as a globally shared SH,
denoted as I°"". For each 3D Gaussian, we sample Ny




Relightable 3D Gaussian Splatting: Material Representation

BRDF Parameterization As stated above, We assign ad- Analytic BRDF prior with
ditional BRDF properties to each Gaussian: a base color
b € [0,1]3, aroughness r € [0, 1] and a metallic m € [0, 1].
We adopt the simplified Disney BRDF model as in [42].
The BRDF function f in Eq. 6 is divided into a diffuse term
fa= I_Tm - b and a specular term:

metallic-roughness workflow.

Parameters are:
Base colour (b): RGB diffuse colour.
Metallicness (m): relative weight of

_ D(h;r) - F(w,, h;b,m) - G(w;, w,, h;r) specular term.
fs(wo, wi) = (n-w;) - (n-w,) ’ Roughness (r): approx. width of
(7) specular lobes.

where h is the half vector, D, F and G represent the normal
distribution function, Fresnel term and geometry term.

Lo(wo, ) = Lf(wo,wi,w)Li(wi,w)(wi ‘n)dws,

L/\ Integral over hemisphere
of incident light
Outgoing light . .
BRDE Incident light Normal

(material) (geometry)

Alpha Blending

. . NS
For each Gaussian, colour is computed

/ — 4 : . 5 . . / — . . . /
with Monte Carlo integration (24 samples): | © (wo) = Zg(fd + folwo, wi)) Li(ws) (wi - ) Aws, (9) ——C > ien Tioucy.




Relightable 3D Gaussian Splatting: Regularizations

Bilateral Smoothness We expect that the BRDF prop-
erties will not change drastically in areas with smooth
color [42]. We define a smooth constraint on metallic as:

Variations of M can only be large in regions
where variations of colour are large.

Lo = [IVM] exp(—[[VCyl), (12) This regularization is applied to metallicness,
roughness and base colour.

where M is the rendered metallic map, given by M =
Zie ~ Lioym;. Similarly, we also define smoothness con-
straints L - and L, ; on roughness and base color.

Light Regularization We apply light regularization as- Regularization term:
suming a near-natural white incident light [26]. Forces light to be approx. white.

1
Liighe =), (Le — 5 > Loce{R,G B} AN

Base Colour Regularization: remove shadows and
highlights from images and enforce this to be
approx. base colour.



Relightable 3D Gaussian Splatting: Pipeline

5.1. Training Details

To ensure stable optimization, the training procedure is di-
vided into two stages. Firstly, we optimize an 3DGS [22]
model, augmented with an additional normal vector n
(Sec. 3.2). We also add normal gradient condition for adap-
tive density control. Subsequently, with the already stable
geometry from the first stage, we begin with the ray trac-
ing method (Sec. 4.1) to bake the visibility term v, and then
optimize the entire parameter set using the comprehensive
pipeline described in Sec. 3.3. During the second stage, we
sample N; = 24 rays per Gaussian for PBR. Tab. 1 pro-
vides a complete list of the used losses and their weights.
We train our model for 30,000 iterations in the initial stage
and 10,000 iterations in the latter. And all experiments are
conducted on a single NVIDIA GeForce RTX 3090 GPU.
Please see the supplementary material for more details.

Speed and Memory To train a NeRF synthetic scene, our
model typically requires approximately 16 minutes and 10
GB of memory. Notably, the visibility baking in the second
stage is remarkably brief, lasting only a few seconds. Fol-
lowing this optimization, our model attains real-time ren-
dering across different lighting conditions, achieving 120
frames per second.

Training stage 1:
e  Optimize 3DGS with normals.

Training stage 2:
e Apply ray-tracing to compute the
per-gaussian visibility and bake it into SHs.

e  Optimize entire set of parameters.

Training and rendering speeds are similar to the original
3DGS method. For a synthetic scene:
° Training time: 16 min (single GeForce RTX 3090).
° Rendering: 120 FPS.
° GPU memory: 10 GB.



Relightable 3D Gaussian Splatting: Results on Synthetic

Table 2. Quantitative results for NVS on NeRF synthetic dataset.
)
Geometry Relighting PSNR1 SSIM{ LPIPS | =,
NPBG [1] point X 28.10 0923  0.077 T
NPBG++[34]  point x 2812 0928 0.076 -
FreqPCR [52]  point X 3124 0950  0.049 =
3DGS [22] point X 3388 0970  0.031 Z
PhySG [49] neural v 18.91 0.847 0.182
Nvdiffrec [29]  mesh v 2905 0939  0.081 =
NelLF++ [47] neural (4 26.37 0.911 0.091 N
Ours point v 31.63 0.960 0.043 Q
£
bS]
>
z.
Results of Novel View Synthesis (NVS) on
synthetic scenes, in terms of 3 image quality
metrics (PSNR, SSIM, LPIPS). %
=
o
Quality is a bit lower than vanilla 3DGS, but
higher than other inverse rendering
methods.
—~
]

Figure 4. Qualitative results of novel view synthesis on NeRF synthetic dataset



Relightable 3D Gaussian Splatting: Results on Real

Table 3. Quantitative results on = Table 6. Training time (time for optimization) and Rendering time

e o]
real-world DTU dataset. (time per rendered image). =,
+
+
DiTseen Iean Training Time Rendering Time 5
NerFactor [51] 24.28 PhySG [49] oh 56 2
PhySG [49] 19.11 .
Nvdiffrec [] 1.5h Sms
Neual-PIL [9] 19.94
: NelLF++ [47] 4h 14s
Nvdiffrec [29] 21.91
NerFactor [51] days -
NelLF++ [47] 28.61
Neual-PIL [9] days -
Ours 30.95 N
Ours 16min 8ms

Nvdiffrec [29]

Results of Novel View Synthesis (NVS) on
real-world scenes, in terms of 3 image

quality metrics (PSNR, SSIM, LPIPS). H
&

Quality is better than other inverse | EEREEQ

rendering methods. - i

Training and rendering speeds are also g " !

much higher.

Ours

[

But: no comparison with NVS-only methods.

Figure 4. Qualitative results of novel view synthesis on DTU dataset



Relightable 3D Gaussian Splatting: Results of BRDF Estimation

Visibility Normal

Base Color Metallic Roughness

Figure 5. Qualitative results of BRDF estimation. Here we visualize the rendered average visibility (ambient occlusion) as well.




Relightable 3D Gaussian Splatting: Ablations

(¢) Metallic wo/w smoothness (d) Roughness wo/w smoothness

Figure 6. Ablation Studies on main components of our method.

Table 4. Ablation on sample number. Average scores are reported.

PSNR{ SSIM1 LPIPS| Time (min) FPS

Ng=12 3142 0.959 0.043 13.77 150
N,=24  31.63 0.960 0.043 15.68 120
N,=48  31.78 0.961 0.042 19.52 87

Ablations:

Light division
Base colour regularization
Bilateral smoothness regularizations

Analysis of number of samples for BRDF
estimation.



Relightable 3D Gaussian Splatting: Relighting

https://nju-3dv.qgithub.io/projects/Relightable3DGaussian/
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Relightable 3D Gaussian Splatting: Limitations

Limitations and Future work Our method comes
with limitations. It does not handle well for unbordered
scenes and requires the presence of object masks during
the optimization process. We have noticed an adverse
impact from the background on our optimization process,
likely due to the unique characteristics of the point clouds
generated by 3D Gaussian Splatting. These point clouds
resemble particles with color and some transparency,
diverging from conventional surface points. Although
we’ve integrated off-the-shelf Multi-View Stereo (MVS)
cues for geometry enhancement, the resulting geometry
still falls short of our expectations. Considering the
potential benefits, exploring the integration of MVS
into our optimization process for more accurate ge-
ometry stands as a promising avenue for future research.




