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Background
BSc in Physics — University of Buenos Aires (UBA), Argentina

PhD in Computer Science — University College London (UCL), UK
Machine learning applications in appearance modelling. Combining methods from 
neural networks and physics-based rendering on tasks such as material and light 
representation, appearance transfer and light estimation.
Supervisors: Profs. Tim Weyrich and Tobias Ritschel.

Visiting Student — Charles University, Prague, Czech Republic
Worked on material appearance remapping
with Profs. Jaroslav Krivanek and Alexander Wilkie.

Research Intern — Adobe Substance 3D, Clermont-Ferrand, France
Worked on material appearance transfer between renderers
with Dr. Cyrille Damez.

Research Intern — Microsoft, Reading, UK
Worked on HDR light representation and estimation
with Drs. Eric Sommerlade and Alexandros Neophytou.

Visiting Student — Columbia University, New York, USA
Worked on physics-based animation of fluids under the supervision of 
Profs. Eitan Grinspun and Christopher Batty.

Marie-Curie Fellowship - European Commission
Funding provided by the Marie-Curie Actions Programme,
through the DISTRO innovative training network.
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Research Projects

Remapping of Material Appearance

HDR Lighting Representation and Estimation

Neural Fields for Material Appearance
Representation and Generation

Neural Blue Noise Generation
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Neural Fields for Time-Series
Interpretable Representation and Generation



Research Projects

HDR Lighting Representation 
and Estimation

Neural Fields for
Material Appearance

Neural Blue Noise 
Generation

Remapping of
Material Appearance

Figure: Robot created in Adobe Substance 3D (left) and then rendered in Unity 5 (right).
[unity3D forum]

Motivation:

● Material creation and editing is hard and requires expert knowledge of the 
parameters used by each specific software.

● Pipelines for content creation often rely on multiple software, with different 
shader implementations, and materials cannot be interchanged between them.

In collaboration with:  Charles University                Adobe Substance 3D
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Neural Fields for Time-Series



Research Projects

Remapping of
Material Appearance

Uniform 
Remapping

Blender

● TRF nonlinear optimisation 
with image-based loss.

● No need to access the 
shading code. Only 
requirement is a rendering 
of a sphere.

Mitsuba 
Renderer

Remapping of uniform material appearance

In collaboration with:  Charles University                Adobe Substance 3D

Spatially-Varying Material Appearance (SVBRDF)
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HDR Lighting Representation 
and Estimation

Neural Blue Noise 
Generation

Neural Fields for
Material Appearance

Neural Fields for Time-Series



Research Projects

Remapping of
Material Appearance

Image-based remapping of material appearance
A. Sztrajman, J. Krivanek, A. Wilkie, T. Weyrich
Eurographics Workshop on Material Appearance Modeling (2017)

Image-based remapping of spatially-varying material appearance
A. Sztrajman, J. Krivanek, A. Wilkie, T. Weyrich
Journal of Computer Graphics Techniques (2019)

In collaboration with:  Charles University                Adobe Substance 3D
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HDR Lighting Representation 
and Estimation

Neural Blue Noise 
Generation

Neural Fields for
Material Appearance

Neural Fields for Time-Series



Research Projects

HDR Lighting Representation 
and Estimation

Remapping of
Material Appearance

Neural Blue Noise
Generation

In collaboration with:

GT Blue Noise White Noise

Figure: Image dithering comparison (1 bit).
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Fast Blue Noise Generation via Unsupervised Learning
*D. Giunchi, *A. Sztrajman, A. Steed
International Joint Conference on Neural Networks (IJCNN), 2022.

Neural Fields for
Material Appearance

Neural Fields for Time-Series



Research Projects

Remapping of
Material Appearance

In collaboration with: 

Neural Blue Noise 
Generation

HDR Lighting 
Representation 
and Estimation

High-Dynamic-Range Lighting 
Estimation from Face Portraits
A. Sztrajman, A. Neophytou, T. 
Weyrich, E. Sommerlade
International Conference on 3D Vision 
(3DV), 2020 (Oral Presentation).

Estimating Illumination in an 
Environment Based on an Image of a 
Reference Object
A. Neophytou, E. Sommerlade,
A. Sztrajman, S. Sengupta
US Patent 2022/0116549 A1.
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Envmap
Analytic
Model 

Optimization

EnvNet 
Encoder

Z

Figure: Hybrid encoding of HDR light.

Analytic 
Model 

Evaluation

EnvNet
Decoder

Predicted 
Envmap

Face2Env
Net

Input 
Portrait

Figure: HDR light prediction from portrait image.

Neural Fields for
Material Appearance

Neural Fields for Time-Series



Research Projects

Remapping of
Material Appearance

Neural Blue Noise 
Generation

HDR Lighting Representation 
and Estimation
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Neural Fields for 
Material Appearance

Neural Fields for 
Time-Series

Neural BRDF Representation and Importance Sampling
A. Sztrajman, G. Rainer, T. Ritschel, T. Weyrich
Computer Graphics Forum (CGF), 2021 (EGSR 2022).

Neural BRDF Representation and Importance Sampling

Figure: new realistic materials generated 
by interpolation.



Research Projects

Remapping of
Material Appearance

Neural Blue Noise 
Generation

HDR Lighting Representation 
and Estimation
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Neural Fields for 
Material Appearance

Neural Fields for 
Time-Series

HyperTime: Implicit Neural Representations for 
Interpretable Time-Series Generation

{ti}

HyperTime: Implicit Neural Representations 
for Interpretable Time-Series Generation
E. Fons, A. Sztrajman, Y. El-Laham, A. Iosifidis, S. 
Vyetrenko
In Review (2022).

Generating Interpretable Time-Series by 
Meta-Learning with Implicit Neural Representations
E. Fons, A. Sztrajman, Y. El-Laham, A. Iosifidis, S. Vyetrenko
Patent Pending



Neural BRDF Representation
and Importance Sampling



Neural BRDF: Introduction
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Figure: Scheme of 
light scattering in a 
smooth specular 
surface.

Figure: Scheme of 
light scattering in a 
diffuse material.

Figure: Diagram of 
incident and 
outgoing light 
directions on the 
surface. The BRDF is 
defined as a 
function of these 
two directions.



Neural BRDF: Introduction

14

Subsurface 
Scattering (8D)

BRDF (4D)

SVBRDF (6D)

BSSRDF (8D)

Isotropic BRDF (3D)

Ignore subsurface 
scattering

Ignore spatial 
variation

Assume isotropy

Milk rendered with (left) and without (right) subsurface 
scattering. [H. W. Jensen et al. 2001]

[M. Seymour 2017, PIXAR Deep Dive 
on SSS]

BRDF Isotropic (left) and Anisotropic (right) materials. Anisotropic brushed 
metal. [blenderartists.org]



Neural BRDF: Introduction

15

Figure: Polar plot of a Phong BRDF for multiple fixed 
incident azimuth angles (15, 30, 45, 60, 75).

Figure: Polar plot of a real-world measured BRDF 
from the MERL dataset, for multiple fixed incident 
azimuth angles (15, 30, 45, 60, 75).

Figure: The MERL 
database contains 
100 real-world 
measured isotropic 
materials.

Delrin



GT (Tabular)

● Accurate
● Large storage (~34 MB)
● Manual interpolation

Neural BRDF: Introduction

Analytic Model (GGX)

● Very inaccurate
● Very low storage (0.03 KB)
● Fast built-in interpolation
● Costly and unstable 

optimisation required
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Neural BRDF Representation

Neural BRDF: Representation

● Exponential activation.

● Rusinkiewicz parameterization of input.

● Rendering-based loss function.

● BRDF-aware sampling of light 
directions during training.
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Figure: coordinate-based neural network (Neural 
BRDF). After training, the network encodes the BRDF 
function                .



GT (Tabular) Analytic Model (GGX)

● Accurate
● Large storage (34 MB)
● Manual interpolation

● Very inaccurate
● Very low storage (0.03 KB)
● Fast built-in interpolation
● Costly and unstable 

optimisation required

Neural-BRDF (Our)

● Accurate
● Very low storage (2.7 KB)
● Fast built-in interpolation
● Costly but stable training

Neural BRDF
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Neural BRDF: Reconstruction Accuracy

High Reconstruction 
Accuracy

Figure: Reconstruction of 
MERL materials using different 
BRDF representations, 
including the average SSIM 
value for each image.

Bottom: Average SSIM over all 
MERL materials.
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Neural BRDF: Reconstruction Error
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Table: Average 
image-based losses of 
BRDF representation 
methods over all MERL 
materials.



Neural BRDF: Compression and Speed

21

Figure: Average SSIM error vs Memory footprint 
(log scale) for multiple BRDF representations, with 
standard deviations. For NBRDFs (in blue), the 
reconstruction accuracy can be adjusted by 
modifying the network size.

Table: Rays traced per second in Mitsuba renderer, 
and memory footprint, for different material 
representations.

High Compression and Fast EvaluationReconstruction Error vs Representation Size



Neural BRDF: Anisotropy

Support for Anisotropic 
Materials

Figure: Neural BRDF reconstruction 
of anisotropic materials from the 
RGL [Dupuy and Jakob 2018].
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NBRDF Autoencoder (HyperNetwork)

● Training is done with NBRDF networks of the 
MERL database.

● Training loss: Instead of comparing NBRDF 
parameters, we implement a differentiable 
rendering loss that evaluates the GT and 
predicted Neural BRDFs, to generate 
renderings of a scene. The loss is then 
computed with an image-based error metric.

● Materials are encoded as 32-values vectors.
Figure: Neural BRDF autoencoder hyper-network. 
Input and output are Neural BRDF network weights.

Neural BRDF: Hyper-Network
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Figure: t-SNE clustering of encodings for MERL 
materials, produced by the Neural BRDF 
hyper-network. Materials with similar 
reflectance properties cluster together.
Test-set materials are indicated in red.

The generation of a unified encoding for the space of 
materials opens up multiple possible applications.

We show results for two applications:

1) Generation of new realistic materials through 
interpolation of the embeddings generated by the Neural 
BRDF hyper-network.

Figure: new materials generated by interpolation of 
encodings of MERL materials.

Neural BRDF: Generation of new materials.
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Neural BRDF: Importance Sampling

2) BRDF Importance Sampling. 

We train a small neural network to predict analytic BRDF 
model parameters, using the NBRDF embeddings as 
input. 

This is essentially a neural-based BRDF fitting, but we only 
predict a limited number of model parameters, required 
for importance sampling. The target analytic model can 
be arbitrary, as long as its CDF is invertible.Figure: Scheme for computation of inverse CDF from an NBRDF.

Figure: Importance sampling of kitchen scene using 64 SPP. Most materials 
in the scene have been replaced by test-set MERL materials.
Right: Average RMSE errors (log scale) vs SPP/render time.25



Neural BRDF: Summary
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● New neural-based representation for high-fidelity compression of measured BRDF data, supporting isotropic and 
anisotropic materials.

● Comparison of Neural BRDF with other BRDF representations, in terms of reconstruction accuracy, evaluation speed and 
memory footprint.

● Implementation of a hyper-network autoencoder architecture with a differentiable rendering loss to explore the space of 
real-world materials by learning latent representations of the Neural BRDF networks.

● Further compression of the BRDF data to 32-values encodings, which can be smoothly interpolated to create new realistic 
materials.

● Learned a mapping between our neural representation and an invertible analytic BRDF model, enabling the importance 
sampling of Neural BRDFs for efficient rendering.



HyperTime: Neural Fields for
Interpretable Time Series Generation



HyperTime: Motivation
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Time-Series have many applications

● Climate, Biology, Medicine, Finance, etc.

● Many works using neural networks on time-series data (classification, forecasting, etc.).

● In particular, synthetic generation of time-series is used to augment training datasets 
and improve performance on downstream tasks.

Neural Fields are a great match for time-series data:

● Good for periodic signals.

● Good for representing a wide spectrum of frequencies.

● Grid-free representation: good for missing data and irregularly sampled datasets.



HyperTime: Univariate and Multivariate Time-Series
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Univariate Time-Series Network

time
(input)

Amplitude f(ti)
(output)

{ti}

SIREN

Figure: Diagram of network for univariate time-series 
representation. The network is composed of fully-connected 
layers with sine activations.

Multivariate Time-Series Network

time
(input)

Amplitudes fk(ti)
(output)

{ti}

SIREN

Figure: Diagram of network for multivariate time-series 
representation. The number of output neurons matches the 
number of channels of the time-series (3).



HyperTime: Interpretable Decomposition (iSIREN)
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However, we want to introduce interpretability into the model.



HyperTime: Reconstruction Results
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HyperTime: Trend-Seasonality Decomposition
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HyperTime: Interpretable Generation of Time-Series
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HyperTime: Trend-Seasonality Split Generation
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ZS

ZT



HyperTime: Trend-Seasonality Split Generation
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HyperTime: Qualitative Evaluation
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HyperTime: Quantitative Evaluation
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Quantitative Metrics:
MAE (Predictive Score)
F1-Score (Quality)



HyperTime: Summary
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● Introduced an interpretable NF architecture for univariate and multivariate time-series 
representation.

● Compared iSIREN with other models in terms of reconstruction performance.

● Proposed HyperTime, a hypernetwork architecture that allows learning a prior from an entire 
dataset of time series. 

● Introduced a spectral loss to guide HyperTime training.

● Introduced a modification of HyperTime to introduce interpretability into the latent 
representation, enabling the potential injection of expert knowledge into the generation process.



Thank you for listening!

Dr. Alejandro Sztrajman

Oct 17, 2022
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