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Abstract—Blue noise is known for its uniformity in the spatial
domain, avoiding the appearance of structures such as voids and
clusters. Because of this characteristic, it has been adopted in
a wide range of visual computing applications, such as image
dithering, rendering and visualisation. This has motivated the
development of a variety of generative methods for blue noise,
with different trade-offs in terms of accuracy and computational
performance. We propose a novel unsupervised learning ap-
proach that leverages a neural network architecture to generate
blue noise masks with high accuracy and real-time performance,
starting from a white noise input. We train our model by
combining three unsupervised losses that work by conditioning
the Fourier spectrum and intensity histogram of noise masks
predicted by the network. We evaluate our method by leveraging
the generated noise for two applications: grayscale blue noise
masks for image dithering, and blue noise samples for Monte
Carlo integration.

Index Terms—Neural networks, Image processing, Noise gen-
erators, Monte Carlo methods

I. INTRODUCTION

Noise signals are commonly classified by the characteristics
of their Fourier spectra, following a colour-based naming con-
vention. In analogy with white light, white noise corresponds
to a flat spectrum, with similar intensities for all frequencies.
Conversely, blue noise refers to a spectrum with minimal
low-frequency components and no high-intensity spikes [2].
Intuitively, blue-noise sampling gives place to a randomised
spatially-uniform distribution of samples, playing an important
role in many applications within visual computing, such as
rendering [3]–[5], dithering [6], stippling [7], [8], texture
synthesis [9], simulations [10] and data visualisation [13].

The generation of blue-noise masks is a computationally
demanding process, and a large number of methods have
been developed for this purpose, with different trade-offs in
terms of speed and spectral accuracy [11]. In this work, we
present a new method for blue-noise mask generation based
on the unsupervised training of a neural network, that can
produce blue-noise masks at real-time rates. To our knowledge,
this is the first method to use a neural-based approach for
the critical task of blue-noise generation. In contrast with
other methods, our approach can be easily generalised to
any kind of noise spectrum, and the inference time does not
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increase considerably with the texture size. Our method relies
on the combination of three unsupervised losses that together
constrain the predicted noise to fit the mathematical definition
of blue noise (described in mathematical detail in Section III).
The first two losses act on the Fourier spectrum of the noise
signal, penalising high frequencies and the occurrence of high-
intensity peaks, while the third loss forces the histogram
of intensities to remain uniform. In Section IV-A, we show
that our predicted blue-noise masks can be used for image
dithering, and we compare our results with other approaches
in terms of dithering error and inference time. Finally, in
Section IV-B we convert our grayscale blue-noise masks to
binary masks via thresholding, obtaining blue-noise samples
that we leverage for Monte-Carlo integration.

II. RELATED WORK

A. Blue Noise

Blue noise is generally characterised by a reduced set of
low frequencies, absence of peaks in high frequencies [1].
This is a property found in the spatial organisation of retinal
cells, and thus it has been linked with the production of
perceptually pleasing patterns [22]. Consequently, it has been
widely adopted in many visual computing applications [2],
including dithering and rendering, which we will discuss
in Sections II-B and II-C. A constant density of samples
characterises a blue noise distribution at different scales.
Geometrically speaking, features such as voids or clusters are
not present. This geometric property appears in the Fourier
domain as the uniform presence of high frequencies and the
absence of dominant components and low frequencies.

There are multiple ways to characterise blue noise patterns,
e.g., according to their dimensionality, the style of the generat-
ing algorithm (dart throwing, relaxation or tiling), and whether
the output is a blue noise grayscale mask or a set of point
samples [2]. So far, most methods for blue noise have focused
on the generation of sample sets [15]–[17]. In contrast, only
a few methods exist to generate blue-noise masks, which are
required for blue-noise dithering. Moreover, blue-noise masks
can be leveraged for the generation of sample sets, through
thresholded binarisation, offering more flexibility and practical
applications [2], [5].



Fig. 1. Diagram of network training, combining the three unsupervised losses: uniform spectrum loss LUS, blue spectrum loss LBS, and histogram loss LH.
After training, the network produces blue noise grayscale masks based on white noise input.

B. Dithering
Dithering can be defined as the intentional addition of noise

to a signal, in order to prevent the occurrence of reconstruction
errors due to quantisation or undersampling. Methods for
dithering can be applied in different signals such as audio
and images, and enable data compression while preserving
the quality of the signal [20]. A common application of
dithering on image data is halftoning, i.e., displaying images as
monochromatic or using one bit per channel. Dithering tech-
niques exploit properties in the spatial integration produced
in the human visual system by distributing the errors among
pixels, thus reducing the quantisation effects [12].

The most prevalent method for blue noise mask gener-
ation for dithering is the void and cluster algorithm by
Ulichney [18]. The method works by filling the voids be-
tween pixels until eliminating empty regions. Although this
procedure is computationally expensive, especially for high-
resolution masks, it is able to generate high-quality blue noise
masks in any dimensionality. More recently, Wronski [14]
developed an optimisation-based method that leverages three
losses to generate blue-noise masks from white noise masks.
Our method, described in Section III, uses similar losses to
produce blue masks, however we leverage a neural network
architecture to reduce the inference time of the noise.

C. Blue Noise and Monte Carlo Integration
Blue noise grayscale masks can be used to produce blue

noise samples, through the application of a thresholded bi-
narization [2], [5]. This enables further applications for blue
noise, such as Monte Carlo integration, which we will dis-
cuss here. Monte Carlo integration (MCI) is a mathematical
approach that evaluates integrals by using random numbers or
samples [24], [25], [29]. Such an approach can be achieved
via different techniques: uniform sampling [26], importance
sampling [27], stratified sampling [28], particle filter [29] or
mean-field particle techniques [30]. One application of MCI is
in rendering; in fact, rendering methods usually involve the nu-
merical computation of high-dimensional integrals. This is typ-
ically done via sampling algorithms, and hence the generation
of samples is a core problem of the area [2]. The application
of blue noise patterns to MCI for rendering was made popular
by Mitchell [21], and has received significant attention since

then. Due to its low discrepancy and randomness, blue-noise
sampling has been leveraged to increase rendering quality and
efficiency. Spencer and Jones [19] applied blue-noise sampling
to the noise reduction in renderings of caustics via photon
mapping. Georgiev and Fajardo [5] exploited blue noise masks
for Monte Carlo ray tracing, demonstrating impressive results
in terms of noise reduction for low samples per pixel.

III. METHOD

Our approach for blue noise generation is depicted in
Figure 1, where we show a diagram of our network training
scheme. The architecture of the network is composed of simple
fully-connected layers with hyperbolic tangent activations,
using noise masks of e.g. 128× 128 as input and output (thus
the dimensions of the network layers are 16384×100×100×
16384).

For the training phase, we leverage a linear combination
of three unsupervised losses that enforce mathematical con-
straints on the output noise:

LUS: Uniform spectrum loss
LH: Histogram loss
LBS: Blue spectrum loss

The LUS and LBS losses operate on the Fourier spectrum
of the output noise. The uniform spectrum loss LUS
imposes a penalty on the magnitude of the directional deriva-
tives of the Fourier spectrum, thus favouring a homogeneous
spectrum of energies and preventing the appearance of high-
intensity peaks. The blue spectrum loss LBS penalises
large values of the Fourier spectrum on a central circular
region corresponding to the low frequencies. In combination,
these two losses produce a Fourier spectrum such as observed
in Figure 2 on the left. In contrast, the histogram loss
LH operates on image-space, enforcing a uniform distribution
of intensity levels in Figure 2 on the right. Such loss functions
map the objective function of the [14] method. We adopt the
same weighted coefficients in the linear combination of the
losses and then, train our weights.

We ran our training with 32k samples for 12 epochs, using
the Adam optimiser, a learning rate of 5e−4, and a batch size
of 64. For the input and output, we tested resolutions from



Fig. 2. Left: blue noise Fourier spectrum enforced by the LUS and LBS losses.
Right: uniform intensity histogram enforced by the LH loss.

64×64 to 512×512 pixels, with a maximum training time of
120s on a GeForce GTX 1080 Ti. The code was implemented
using Tensorflow 2.7 in Python 3, and can be found in the
project’s webpage.

A. Mathematical Description of Loss Functions

The total loss function is a linear combination of three
separate components described in the previous section: LUS,
LH and LBS. The blue spectrum loss LBS acts on the Fourier
spectrum of the predicted noise, penalising frequencies in-
creasingly above a cut-off threshold ωcutoff. Let ŝ be the noise
signal predicted by the network, and ϕ̂ij = ∥FFT (ŝ)∥ the
norm of its Fourier spectrum at grid point ij. Then we can
write the blue spectrum loss as:

LBS =
∑
ij

ϕ̂ij

[
max

(
0,

ωcutoff − r2ij
ωcutoff

)]2
(1)

where rij is the radius of the point ij measured from the center
of the grid.

The uniform spectrum loss LUS also acts on the spectrum of
the predicted signal ŝ, by penalising large values of its spatial
derivatives:

LUS =
∑
ij

[
∇2ϕ̂ij

]2
+∇iϕ̂ij +∇j ϕ̂ij (2)

where ∇2 is the Laplacian operator, and ∇i and ∇j are the
spatial derivatives in the main directions of the grid, and can
be computed by finite differences.

Finally, the histogram loss LH acts on the histogram of
intensities of the noise:

LH =
∑
k

[Histogram(ŝ)k − RefHk]
2 (3)

by penalising deviations from a uniform reference histogram
RefH.

IV. RESULTS

A. Dithering

After training, our network is able to produce blue noise
masks as output, as shown in the first column of Figure 3.
Here we display typical blue noise masks for multiple noise

generation methods. In addition, to regular white noise, we
show outputs from the popular Void & Cluster method by
Ulichney [18], and the optimisation-based approach proposed
by Wronski [14]. In columns 2 and 3 of Figure 3 we display
diagrams of the histogram and Fourier spectra of the predicted
masks, where we can observe the effects of the unsupervised
losses described in Section III.

Fig. 3. Comparison between noise masks, FFT of such mask, and histogram.
On the rows different method to obtain such mask.

In order to evaluate our results, we will focus on the
application of blue-noise to image dithering, discussed in
Section II-B. In Figure 4 we display a comparison of the
dithering of multiple images, using the different methods from
Figure 3. In all cases, dithering is used to compress the images
to a single bit per colour channel.

A visual inspection of Figure 4 shows that our method
produces dithered reconstructions with lower noise than white
noise, and similar in quality to the optimisation-based ap-
proach by Wronski [14]. Consistently, the Void & Cluster
method produces the highest quality reconstructions, although
we will later show that this is at the expense of a high
computational cost, which might be prohibitive for real-time
applications. The observations from Figure 4 are confirmed
by Table I, where we show average root mean square errors
(RMSE) for the dithering of the David statue, using 100
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Fig. 4. Comparison between dithering results, using our solution (second column) and others such as white noise, Wronski 2020, and Void&Cluster. The left
most column is the original image.

different dithering masks for each noise generation method.
As part of the error computation, both the ground truth and
dithered images are pre-processed with a Gaussian filter.

TABLE I
DITHERING ERRORS FOR MULTIPLE NOISE GENERATION METHODS,

AVERAGED OVER 100 DITHERING MASKS.

Method RMSE
White Noise 0.069± 0.002

Neural Network (Ours) 0.046± 0.001
Wronski 2020 [14] 0.046± 0.001

Void & Cluster 0.029± 0.001

Finally, we analyse in Figure 6 the inference time (in
logarithmic scale) of the different noise generation methods, as
a function of the dither mask resolution. Here we see that our
method is able to produce new blue noise masks much faster
than other methods, at around 0.018 s per mask. Moreover,
the evaluation time for other methods grows considerably with

Wronski 2020Nnet (Ours)Void&Cluster

Fig. 5. Samples obtained by thresholded binarization of the blue noise
grayscale masks produced by three different methods.

the size of the noise mask, while our method’s remains nearly
constant. This opens the door for interesting applications, such
as fast blue noise sampling for Monte Carlo based rendering,
as discussed in Section II-C.
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Fig. 6. Time (log) vs mask size for different noise generation methods.

B. Monte Carlo Integration

As discussed in Section II-C, blue noise masks can also
be leveraged to produce sample sets, enabling applications of
blue noise sampling, such as efficient Monte Carlo integration.
In Figure 5 we display exemplars of blue noise samples with
multiple noise generation methods analysed in the previous
section.

We evaluate the blue noise samples generated by these
methods through the application of Monte Carlo integration. In
Figure 7 we leverage the generated samples to the integration
of two functions, with known analytic integrals. We show the
root mean square error of the integral computation through
Monte Carlo sampling, as a function of the number of samples
used for the integration.

As expected, white noise and void & cluster present cor-
respondingly the slowest and fastest convergence speeds, in
terms of the number of samples. As seen in the previous
section, in the case of void & cluster this comes at the cost of a
high inference time of the blue noise mask, especially for large
mask sizes, potentially required to generate large numbers of
samples. Our neural-based method shows consistently faster
convergence than white noise, and in some cases lower error
than void & cluster, for low number of samples. The method
by Wronski [14] presents an inconsistent behaviour, showing
in some cases even higher errors than white noise integration.
It is worth noting that, while other potentially faster methods
exist for the generation of low-discrepancy samples, we have
reduced our comparison to methods that are able to produce
blue noise masks for dithering.

V. LIMITATIONS AND FUTURE WORK

The implementation of the method for blue noise generation
described in Section III is limited to bi-dimensional noise
masks. However, there is no intrinsic limitation to extend
the approach to higher dimensionality. Efficiently producing
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Fig. 7. RMSE vs Number of Samples (log-log scale) for the Monte Carlo
integration of two functions (rendered in the bottom left corners), using
samples from different noise generation methods. Top: Centred Sphere.
Bottom: Centred Gaussian. [31]

higher-dimensional blue noise is a current open problem
that would benefit Monte Carlo integration for ray-tracing.
The complexity of methods such as void & cluster grows
intractably with the dimensionality of the noise.

On the other hand, for bi-dimensional cases, we have shown
that the void & clusters method produces very high quality
blue-noise, very hard to match by other algorithms. Following
our current approach, an interesting direction for research
would be to leverage the void and cluster algorithm in the
loss as a differentiable operation. Another strong candidate
to improve the loss in our architecture, is the inclusion of
a dithering-based loss, i.e., a differential implementation of
image dithering that can improve noise generation specifically
for dithering. In addition, other geometric losses can be
incorporated, such as the star-discrepancy loss, that takes into
account the average distance between points. Other potential
improvements to the architecture would involve splitting the



Fourier spectrum into real and imaginary parts inside the
network architecture, to operate on them separately, and the
inclusion of an adversarial loss that leverages blue noise from
the void & cluster method.

VI. CONCLUSIONS

In this work, we present a new method for blue-noise mask
generation based on the unsupervised training of a neural
network. Our method can produce blue-noise mask from
white-noise inputs at interactive rates. To our knowledge, this
is the first method to use a neural-based approach to generate
blue-noise masks, which can be leveraged for image dithering.
Our approach can be easily generalised to any kind of noise
spectrum, and we observed that the inference time does not
increase considerably with the output mask size.

We compared our method against other blue-noise genera-
tion techniques that are able to produce grayscale masks. We
evaluated all methods by measuring the average errors on two
applications of blue noise: image dithering and Monte Carlo
integration. While the void & cluster method produces the
most accurate blue-noise, we showed that our method is faster,
especially for large mask sizes.
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