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Abstract

We present a CNN-based method for outdoor high-
dynamic-range (HDR) environment map prediction from
low-dynamic-range (LDR) portrait images. Our method
relies on two different CNN architectures, one for light en-
coding and another for face-to-light prediction. Outdoor
lighting is characterised by an extremely high dynamic range,
and thus our encoding splits the environment map data be-
tween low and high-intensity components, and encodes them
using tailored representations. The combination of both
network architectures constitutes an end-to-end method for
accurate HDR light prediction from faces at real-time rates,
inaccessible for previous methods which focused on low
dynamic range lighting or relied on non-linear optimisation
schemes. We train our networks using both real and synthetic
images, we compare our light encoding with other methods
for light representation, and we analyse our results for light
prediction on real images. We show that our predicted HDR
environment maps can be used as accurate illumination
sources for scene renderings, with potential applications in
3D object insertion for augmented reality.

1. Introduction
Light prediction from images enables many applications,

such as 3D object insertion for augmented reality [3], material
appearance estimation [17] and reflectance transfer [16]. In
the case of face images, an accurate and fast estimation
of the illumination can be leveraged for real-time realistic
3D object insertion and editing of scene attributes [11],
with applications on portrait images and video conferencing
systems. While lighting estimation from faces has already
been studied [11, 20], previous works focused on predicting
low-frequency and low dynamic range lighting, or were based

on non-linear optimisation [1], which is time-consuming at
inference and prone to local minima. Outdoor lighting
is characterised by an extremely high dynamic range, due
to the gap in intensity between the sun and the rest of the
environment map, and thus its prediction requires an accurate
encoding of a wide range of intensity levels.

We present a method for face lighting estimation which
takes as input a single portrait image and predicts the corre-
sponding outdoor high-dynamic-range (HDR) environment
map. Our method is based on the combination of two deep
convolutional network architectures, one for light encoding
and the other for face-to-light prediction. While previous
methods have attempted to infer the illumination by using
faces as light probes [1], the prediction of the high-intensity
pixels is usually inaccurate, which makes the resulting HDR
maps inappropriate for changes of exposure level and its
use as realistic lighting sources in renderers. Our proposed
method relies on using different representations for the low
and high-intensity pixels of an HDR map, thus improving
the light prediction and producing environment maps that
can be used to insert rendered photo-realistic 3D assets in
the scene.

The key contributions of our work are as follows:

• We define a new compact encoding for outdoor HDR
environment maps, which focuses on generating an ac-
curate representation of the high-intensity illumination,
while also preserving a realistic appearance of the low
intensity.

• We implement two CNN architectures, one for light
encoding and another one for light prediction from
portrait images. Together these form an end-to-end
network architecture able to predict HDR environment
maps from low-dynamic-range (LDR) portrait images



at much faster rates than previous methods [1], with
potential applications for real-time light prediction and
3D object insertion.

In Section 5.1, we compare our light encoding with
other methods for light representation, both in terms of
environment map reproduction and as sources of illumination
for 3D scenes. In Section 5.2, we show the results of our
method for light prediction, applied to both synthetic and real
portrait images. Furthermore, we show that our predicted
HDR environment maps can be used as visually plausible
illumination sources for scene rendering.

2. Related work
2.1. Outdoor light prediction

Light prediction from a single outdoor image was first
proposed by Lalonde et al. [12]. More recent approaches
have leveraged the use of convolutional neural networks to
predict outdoor HDR environment maps from LDR images.
Zhang et al. [26] proposed a deep autoencoder framework
to regress HDR environment maps from LDR panoramic
images, effectively learning an inverse tone mapping for
outdoor scenes. Hold-Geoffroy et al. [6, 7] and Zhang et
al. [27] developed neural methods to predict outdoor HDR
environment maps from limited field-of-view portions of
LDR panoramic images. Georgoulis et al. [4] used specu-
lar objects of uniform reflectance and known geometry as
probes to estimate the lighting and material properties. Simi-
larly, LeGendre et al. [14] infer plausible HDR illumination
from indoor and outdoor LDR images from a mobile phone.
Training data is collected from videos that include visible
spheres of different reflectances on screen, and then used to
implement an image-based loss by differential relighting.

Closest to our work, Calian et al. [1] use human faces
as probes to predict the illumination of the scene. While
they employ a similar autoencoder architecture to generate
the environment map encodings, their method relies on a
non-linear optimisation which is time-consuming at inference
and prone to local minima. In contrast, our method performs
the light prediction in an end-to-end network framework,
resulting in much faster inference.

Yi et al. [25] leverage a large dataset of faces for unsu-
pervised training of a network for highlight extraction. A
second architecture maps the highlights to a parametric envi-
ronment map, enabling HDR light estimation from indoor
and outdoor portrait images. Sun et al. [23] use a light stage
setup to capture 18 subjects and generate relighted portrait
images using a large database of environment maps. They
use this data to train a convolutional architecture for fast light
prediction and relighting of portrait images.

Zhou et al. [29] use a similar architecture for light predic-
tion and portrait relighting, but they leverage a large dataset
of faces with lower quality light estimation, and include a

GAN loss to correct inaccuracies in the dataset. Our own
architecture for light prediction is inspired by the encoder of
the Hourglass architecture used by Zhou et al. [29]. As in
their implementation, we predict lighting from the luminance
of a portrait image; however, we have replaced their spherical
harmonics light representation by a custom-encoding.

2.2. Illumination encoding

Light estimation from images is an ill-posed inverse prob-
lem, due to the ambiguity in the decomposition of light
and reflectance contributions [24]. This problem is usually
addressed by using a constrained model to encode the illu-
mination, such as Spherical Harmonics [15, 11, 21, 29], as
originally proposed by Ramamoorthi and Hanrahan [18, 19].
In the case of outdoor illumination, multiple analyticalmodels
have been proposed to represent the sky hemisphere. Zhang et
al. [27] perform a comparison of the Hošek-Wilkie model for
clear skies [8, 9] and the Lalonde-Matthews sky model [13],
as priors for a CNN architecture that predicts outdoor HDR
environment maps from LDR images in all-weather con-
ditions. Calian et al. [1] use the Lalonde-Matthews sky
model [13] to predict illumination from faces, and compare it
to a data-driven representation generated by a convolutional
autoencoder, shown to produce more accurate predictions.
Our method lies at the intersection between both repre-
sentations, using a parametric model for the sun and an
autoencoder-based encoding for the rest of the illumination.
This split allows us to correctly reconstruct the high-intensity
peak of the sun, while also providing flexibility in the mod-
elling of the rest of the illumination, including the sky and
the ground. The reconstruction of the lower hemisphere is
addressed by Calian et al. (2018) by modelling the ground
with a uniform albedo, and it is not discussed by Zhang et
al. (2019), as they focus on the upper hemisphere.

3. Method
In this section we present the general method with a

detailed description of the architectures of the networks used
for light encoding and for the prediction of the incident
lighting at a face.

3.1. HDR environment map Encoding

In order to encode our outdoor HDR environments maps
we split the HDR light data ! in two parts !low and !high,
corresponding to the low (0 ≤ ! ≤ 1) and high intensity
values:

!;>F = clip(!,0,1) (1)
!ℎ86ℎ = ! − !;>F (2)

The high-intensity part !high usually contains a small
number of very bright pixels corresponding to the sun, as
shown in the top row of Figure 1. In the bottom row we



show renderings of a synthetic face with the corresponding
environment maps from the top row. While the few bright
pixels from !ℎ86ℎ seem negligible in an LDR environment
map, they contribute a significant part of the illumination of
the face. Moreover, its accurate representation is critical to
reconstruct the full dynamic range of the scene, capturing
the correct lighting at different exposure levels [2].

= +

Figure 1. Top: splitting of outdoor HDR environment map:
! = !low + !high. Bottom: Synthetic face rendered with each
corresponding environment map (!, !;>F , !ℎ86ℎ).

To encode !low we use a deep convolutional autoencoder
architecture with a 16-values embedding layer as shown
in Figure 2, trained with outdoor HDR environment maps
collected from the Laval Outdoor HDR Dataset [6].

Envmap Low Predicted
Envmap AE

Envmap Low
Embedding Zlow

Envmap GT Low

Figure 2. EnvNet: autoencoder of !low.

To encode !high we fit three 2D Gaussian models (one per
colour channel) using Levenberg-Marquardt. This allows us
to model a single high-intensity light source. In cases with
additional sources, such as environments with strong reflec-
tions from windows or water surfaces, our model is expected
to gradually degrade, toward modelling these sources as LDR
content. In each Gaussian model we fit the two coordinates
of the centre and the amplitude, and we set the covariance
to a fixed value. While this value can also be successfully
fitted during the optimisation, we found its predicted value
to have very little spread, suggesting that most of the time
the fixed-size sun disk overpowers surrounding scattering.

The optimisation is initialised using the maximum RGB
values in the environment map as starting points for the Gaus-
sian centres and amplitudes, leading to a quick convergence.
The resulting representation for !high contains 5-parameters

corresponding to the two coordinates of the Gaussian centre
and the amplitudes for each colour channel. Putting both
parts together our full representation for environment maps
is a 21-value embedding (16 for !low + 5 for !high), which
we will use in our face-to-light architecture.

3.2. Face to Light

In Figure 3, we detail the architectures of the environment
map autoencoder and the network for light prediction from
faces.

Figure 3. Architectures of the networks for environment map en-
coding and prediction from faces.

The light prediction network takes as input the luminance
of a background-less portrait image (256 × 256 × 1) and
outputs a 21-parameters embedding corresponding to the
predicted illumination encoding /env. This consists on the
concatenation of the encodings of the low (/low) and high
(/high) parts of the predicted outdoor HDR environment
map. Although using only the luminance has the potential of
missing information from the scene, leading to ambiguities
in the prediction, especially in regards of !low, this provided
more stable predictions than using the full RGB input.

3.3. Training

Training of the environment map prediction network is per-
formed with real face-environment map pairs from the Laval
face+lighting HDR dataset and with synthetic data generated
by combining scanned faces from the ICT 3D Relightable
Facial Expression Database [22] (ICT-3DRFE) with envi-
ronment maps from the Laval Face+Lighting dataset [1]
(see Section 3.4). The encodings used to represent the
environment maps are obtained by applying the procedure
from Section 3.1. In the case of real portrait images, we
perform a background segmentation and removal by using
Mask R-CNN [5]. The full pipeline is displayed in Figure 4.

The training loss applied to the environmentmap encoding
is mse, however different scaling factors are used for different
segments of Ienv, corresponding to the environment map low
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Figure 4. Full processing pipeline of portrait and environment map images, for the training of Face2EnvNet.

part Ilow and two different parts of the Gaussian parameters
Ihigh: the amplitudes and the centre position. For the EnvNet
autoencoder, the training loss applied to the HDR image data
is mae.

The prediction of the sun’s azimuth angle requires special
attention in the face-to-light network. A straightforward mse
loss in training leads to inaccurate predictions in cases where
the sun is located near the edge of the environment map
image. This can be solved by modifying the loss to enforce
the periodicity of the azimuth parameter:

loss(\, \∗) = mse(cos \, cos \∗) + mse(sin \, sin \∗) (3)

The environment map prediction network has 5.4 × 105

parameters and is trained for 350 epochs with the adam
optimiser, using a mini-batch size of 15 and an initial learn-
ing rate of 0.0002. The training of both networks takes
approximately an hour on a GeForce RTX 2080 Ti GPU, and
inference takes approximately 0.5 ms.

3.4. Datasets

The dataset used to train the EnvNet autoencoder is the
Laval Outdoor HDR dataset [6], which consists of 200 HDR
environment maps of different outdoor locations and weather
conditions. The dataset was augmented by generating random
azimuth rotations of the original environment maps, as shown
in Figure 5, generating a total of 2, 200 samples. In addition,
the environment maps were further multiplied by a random
scaling factor between 0.1 and 1 to compensate for the lack
of dark environment maps in the dataset (e.g. cases where
the sun is hidden or very low in the horizon).

The training of Face2EnvNet involved the use of real and
synthetic face-environment map pairs.
Real samples came from the Laval Face+Lighting HDR
dataset, which consists of portrait images of 9 subjects

Figure 5. Environment map augmentation: random rotations of the
azimuth angle.

illuminated under 25 different lighting conditions, and their
corresponding HDR environment maps, for a total of 137
face/lighting pairs, as shown in Figure 6. This dataset
was augmented by horizontal flipping of both face and
environment map images.

Figure 6. Overview of Laval Face+Lighting dataset [1], which
includes real faces captured outdoors under different illumination
conditions, and their corresponding HDR environment maps.

Synthetic data was generated by combining 30 faces from
the ICT 3D Relightable Facial Expression Database [22]
(ICT-3DRFE), with randomly chosen environment maps
from the Laval Face+Lighting HDR dataset augmented
with azimuth rotations to a total of 500 environment maps.
Additionally, small variations of scene parameters were
randomly introduced, such as face rotations in the three
axes and distance to the camera. Although this was done



to introduce robustness in the training, the light prediction
network was only tested with front-facing real portraits.
Images were rendered using the Mitsuba Renderer [10] for a
total of 1000 synthetic face/environment map pairs, such as
shown in Figure 7.

Figure 7. Overview of synthetic dataset generated from combining
scanned faces from the ICT 3D Relightable Facial Expression
Database [22] (ICT-3DRFE) with environment maps from the
Laval Face+Lighting dataset [1].

4. Evaluation metrics
Similarly to Calian et al. [1], we evaluate the quality

of reconstruction of HDR environment maps through two
different sets of metrics: lighting-based metrics (mae-dl
and rmse-dl) directly quantify the image difference between
ground truth and predicted environment maps, weighed by
the solid angle subtended by each pixel in the full sphere or
the upper hemisphere (Skymae–dl). Shading-based metrics
on the other hand, measure the quality of environment map
reconstruction indirectly, by computing image losses (mae,
rmse, ssim, lpips) over a set of scenes rendered using the
ground truth and predicted environment maps as sources
of illumination. This set of metrics emphasises the use
of predicted environment maps as lightmaps for rendering
applications, such as 3D object insertion.

5. Results
5.1. EnvNet Encoding

In Figure 8 we evaluate the performance of our method
(ae+gauss) for light encoding (described in Section 3.1).
Training was done with the Laval Outdoor HDR dataset [6],
augmented with random azimuth rotations as described
in Section 3.4. In Figure 8 we show the encoding of 6
previously unseen HDR environment maps, and compare
our encoding (21 parameters) with the results produced by
fitting the ground truth environmentmaps to 2nd (SH9) and 4th
(SH25) order spherical harmonics, with 27 and 75 parameters
correspondingly. We also show the results of encoding the
entire HDR environment map using an autoencoder (ae),

without separation between !low and !high, and removing the
Gaussian fit. Each 5 × 3 block in Figure 8 shows different
encodings fitted to the same environment map with, and
below them the results of using each encoding to illuminate
two scenes, one with a purely diffuse 3D dragon, and one
with a very specular one. Table 1 summarises the results
of our encodings comparison, with statistics taken over 41
previously unseen HDR environment maps from the Laval
Outdoor HDR dataset [6].

The HDR environment maps reconstructed from the
spherical-harmonics representations present an abstract sim-
ilarity to the ground truth, while our encoding recovers a
discernible appearance which allows us to identify general
characteristics of the scene, such as the colour of the floor,
the weather conditions and the location of the sun. This is
reflected in the lighting-based metrics from Table 1, where
SH errors more than double our encoding’s loss. In the
case of shading errors, the differences between methods are
smaller, although our method still manages to achieve smaller
errors using a much smaller number of encoding parameters.
A qualitative analysis of the dragon renderings from Figure 8
shows that our method is consistently better at preserving
shadows, associated with the directional light !high from the
sun, and often also better captures the overall illumination
colour of the scene, predominantly linked to !low.

For a fixed exposure, a pure ae encoding can provide a
seemingly more accurate reconstruction than the ae+gauss
method, such as shown in Figure 9. However, the full dy-
namic range of the sun’s intensity is lost in the ae encoding,
leading to renderings that are too dark and have lost their
dominant directional light. The separation of the environ-
ment map light into !low and !high, and its disjoint encoding
(ae+gauss) explained in Section 3.1, produces a more accu-
rate HDR representation of the illumination source, leading
to renderings that preserve shadows and better match the
brightness of the scene.

5.2. Light Prediction

In Figures 10 and 11 we show the results of our full
pipeline for light prediction from faces (Figure 4) applied
to synthetic and real portrait images. On the left we show
the input portrait image, in the center we show ground
truth and predicted environment maps, and on the right we
present renderings of a synthetic face using GT and the
predicted environment maps as illumination source. For
real portrait images (Figure 11) we further compare our
results with predictions from Calian et al.’s method [1],
kindly provided by the authors. To account for potential
differences in radiometric scale between the HDR datasets,
we renormalised Calian et al.’s environment maps by a global
multiplier, chosen to minimise the average rmse with respect
to the ground truth Laval Face+Lighting dataset [1], thus
granting their results to most favourable comparison to our
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Figure 8. Comparison of outdoor environment maps fitted with our AE+Gauss encoding, with spherical harmonics of degrees 2 (SH9) and 4
(SH25), and with an autoencoder without split between !low and !high. Each 5 × 3 block shows the fitting of one environment map with the
different encodings, and the results of using each fitted environment map as illumination to render scenes with diffuse and specular dragons.
Left to right: GT, SH9, SH25, AE, AE+Gauss. Top to bottom: environment map, rendering of diffuse asset, rendering of specular asset.

MAE RMSE Lighting MAE–dl Lighting RMSE–dl # Parameters

SH9 0.030 ± 0.024 0.031 ± 0.025 0.20 ± 0.09 0.21 ± 0.09 18
SH25 0.025 ± 0.024 0.026 ± 0.022 0.21 ± 0.11 0.21 ± 0.11 75
AE 0.032 ± 0.024 0.033 ± 0.024 0.12 ± 0.04 0.12 ± 0.04 16
AE+Gauss 0.022 ± 0.015 0.023 ± 0.015 0.08 ± 0.03 0.08 ± 0.03 21

Table 1. Quantitative comparison of light encoding methods. Lighting-based and shading-based metrics (see Section 4) taken over 41
previously unseen HDR environment maps from the Laval Outdoor HDR dataset [6].

Figure 9. GT Environment map (left) reconstructed from ae (center)
and ae+gauss (right) encodings. Bottom: renderings of diffuse
dragon scene with corresponding environment map. The ae re-
construction looks accurate at a fixed exposure level, but the full
dynamic range of the sun is lost in the encoding, producing render-
ings that are too dark and have no directional light.

method. A quantitative comparison, using both lighting-
based and shading-based metrics, is summarised in Tables 2
and 3. The full set of results can be found in the additional
material, together with the pre-trained networks for light
encoding and prediction.

In general, our network’s predictions show a good agree-
ment with the ground-truth environment maps, both for real
and synthetic portrait images. There is a good visual match
between environment map images, signalling an adequate
prediction of the !low encoding parameters. A comparison
of the rendered faces on the right also shows a generally
good prediction of the sun position and intensity, encoded by
the !high parameters. Additionally, there is good agreement
in the prediction of the sun position in both parts of the
encoding: !low and !high consistently describe the sun in
close locations.

In terms of lighting-based metrics, shown in Table 2,
Calian et al.’s method provides a closer prediction of the
environment maps, with the exception of the sun’s altitude
which is consistently placed very low, close to the horizon line
(see Figure 11). In contrast, the comparison of shading-based
metrics from Table 3 shows that our method outperforms
Calian et al.’s both in point-wise and perceptually-based
metrics. This is evidenced in the better reconstruction of



MAE–dl RMSE–dl Sky MAE–dl Sun Altitude (rad) Sun Azimuth (rad)

Our method→ Real 0.14 ± 0.07 0.15 ± 0.08 0.27 ± 0.14 0.12 ± 0.09 0.48 ± 0.66
Calian et al. (scaled)→ Real 0.12 ± 0.06 0.13 ± 0.06 0.22 ± 0.11 0.41 ± 0.20 0.12 ± 0.11

Table 2. Quantitative results for light prediction from real faces. Comparison of lighting-based metrics (see Section 4) of our method
with Calian et al. [1]. Calian et al.’s predicted environment maps have been scaled to match the average RMSE of the ground truth Laval
Face+Lighting HDR dataset [1].

MAE RMSE SSIM LPIPS v0.1 [28]

Our method→ Real 0.015 ± 0.010 0.017 ± 0.011 0.95 ± 0.02 0.029 ± 0.018
Calian et al. (scaled)→ Real 0.027 ± 0.016 0.031 ± 0.019 0.89 ± 0.03 0.086 ± 0.014

Table 3. Quantitative results for light prediction from real faces. Comparison of shading-based metrics (see Section 4) of our method with
Calian et al. [1], taken over a rendered 3D face, as seen on the right side of Figure 11. Calian et al.’s predicted environment maps have been
scaled to match the average RMSE of the ground truth Laval Face+Lighting HDR dataset [1].

Portrait GT Envmap Pred Envmap (Ours) GT Render Our Render

Figure 10. Results on 7 synthetic faces from the ICT 3D Relightable
Facial Expression Database [22] (ICT-3DRFE) illuminated with
environment maps from the Laval Face+Lighting dataset [1]. Left
to right: input portrait image, GT environment map, predicted
environment map, synthetic face rendered with GT environment
map and with predicted environment map.

shadows and overall illumination colour in the renderings
from Figure 11.

Although the light encoding network was trained with
a wide variety of environment maps, the light prediction
network is biased towards the appearance of a university
campus, as a consequence of our limited training data. Given
the robustness of the system, however, we believe that a more
varied training dataset would mitigate such bias.

Noticeably, our predictions are good for different weathers,
including overcast skies and dark environment maps, where
the sun is hidden or very low in the sky. This can be observed
in Figure 10, rows 1 and 3, and Figure 11, row 7. The Laval
Outdoor HDR Dataset [6], used to train our environment
map autoencoder, does not contain samples with such low-
dynamic-range, and hence the intensity augmentation of the
dataset described in Section 3.4 is crucial for the correct
encoding and prediction in these cases.

In cases where the light is frontal (sun in the middle of
the environment map image), small errors in the prediction
of the sun position can lead to noticeable changes in the
direction of the shadows on the face. This can be observed
in the first row of Figure 11.

Finally, Figure 11 row 4 shows a failure case in the estima-
tion of directional light. Although the !low reconstruction is
close to the ground truth, the network predicts the existence
of two bright sources of illumination in the sky, and places
the !high peak near the wrong one, effectively rotating the
directional light source. Similar examples can be observed
in the supplemental material, along with the details of the
Gaussian reconstruction of !high.

6. Conclusions

We presented a method for outdoor HDR environment
map prediction from portrait images, relying on two CNN
architectures, for light encoding and light prediction. Our pro-
posed representation for light leverages the extreme dynamic
range in outdoor scenes to generate a compact encoding.
By combining both networks we generate an end-to-end
pipeline for accurate HDR light estimation from faces, with
an inference time of 0.5 ms, suitable for real-time applica-
tions. We compared our light encoding with other methods
for light representation, showing that it is able to produce
more realistic and compact representations of HDR lighting,
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Figure 11. Results on 8 real faces from the Laval Face+Lighting HDR dataset and comparison with predictions from Calian et al. [1]. Left to
right: input portrait image, GT environment map, predicted environment map with our method and Calian et al.’s, synthetic face rendered
with GT environment map and with predicted environment maps.

while also accurately preserving the information necessary
for rendering applications. We analysed the estimation of
light from real and synthetic portrait images, showing that
the low-intensity prediction preserves a realistic look for
the environment map, while the high-intensity prediction
accurately predicts the intensity and position of the sun.
As a result, this better preserves light reflections and hard
shadows, conveying a realistic illumination consistent with
the original portrait image, required for applications such as
object insertion and face relighting.
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